Thin and thick film

 
Thin and thick film

What are thin and thick film resistors? Thin and thick film resistors are the most common types in the market. They are characterized by a resistive layer on a ceramic base. Although their appearance might be very similar, their properties and manufacturing process are very different. The naming originates from the different layer thicknesses. Thin film has a thickness in the order of 0.1 micrometer or smaller, while thick film is around thousands time thicker. However, the main difference is method the resistive film is applied onto the substrate. Thin film resistors have a metallic film that is vacuum deposited on an insulating substrate. Thick film resistors are produced by firing a special paste onto the substrate. The paste is a mixture of glass and metal oxides. Thin film is more accurate, has a better temperature coefficient and is more stable. It therefore competes with other technologies that feature high precision, such as wirewound or bulk metal foil. On the other hand, thick film is preferred for applications where these high requirements are not critical since prices are much lower. Thin Film Technology The resistive layer is sputtered (vacuum deposition) onto a ceramic base. This creates a uniform metallic film of around 0.1 micrometer thick. Often an alloy of Nickel and Chromium is used (Nichrome). They are produced with different layer thicknesses to accommodate a range of resistance values. The layer is dense and uniform, which makes is suitable to trim the resistance value by a subtractive process. With photo etching or by laser trimming patterns are created to increase the resistive path and to calibrate the resistance value. The base is often alumina ceramic, silicon or glass. Usually thin film is produced as a chip or smd resistor, but the film can also be applied onto a cylindrical base [… read more]

Wirewound resistor

 
Wirewound resistor

What is a wire-wound resistor? A wire wound resistor is an electrical passive component that limits current. The resistive element exists out of an insulated metallic wire that is winded around a core of non-conductive material. The wire material has a high resistivity, and is usually made of an alloy such as Nickel-chromium (Nichrome) or a copper-nickel-manganese alloy called Manganin. Common core materials include ceramic, plastic and glass. Wire wound resistors are the oldest type of resistors that are still manufactured today. They can be produced very accurate, and have excellent properties for low resistance values and high power ratings. Definition of a wirewound resistor A wire wound resistor is a resistor where a wire with a high resistivity is wrapped around an insulating core to provide the resistance. Construction Wire wound resistor construction varies widely. The manufacturing and choice of materials used is dependent on the way the resistor will be used in a circuit. All are made by winding a wire around a core. The resistance value is dependent on the resistivity of the wire, the cross section and the length. Since these parameters can be accurately controlled, a high precision can be achieved. For high tolerance requirements, the resistance value is measured to determine exactly the cut to length of the wire. To create a high resistance, the wire diameter needs to be very small and the length very long. Therefore wire wound resistors are mainly produced for lower resistance values. For low power ratings, very thin wire is used. The handling of the wire is for this matter critical. Any damage may sever contact. After winding the wire is well protected from access of moisture to prevent electrolytic corrosion. Next to precision, there are also wire wound resistors with high power rating for 50W or more. [… read more]

Carbon composition resistor

 
Carbon composition resistor

An introduction to carbon composition resistors Carbon composition resistors (CCR) are fixed form resistors. They are made out of fine carbon particles mixed with a binder (for example clay). After baking it has a solid form. Although carbon composition resistors are widely applied in circuits, the majority of resistors are nowadays  made by deposition of a metal or carbon film over a ceramic carrier. Advantages and disadvantages The big advantage of carbon composition resistors is their ability to withstand high energy pulses. When current flows through the resistor, the entire carbon composition body conducts the energy. The wirewound resistor for example, has a much smaller volume of the wire to conduct.  So the thermal mass of the carbon composition resistor is much higher, resulting in a higher energy capability.  Carbon resistors can be made with a higher resistance than wirewound resistors, and are considerably cheaper. However, the properties are less good in terms of temperature coefficient, noise, voltage dependence and load. Fifty years ago, carbon composition resistors were widely used in consumer electronics. Because of the low stability of the resistance value, this type of resistor is not suitable for any modern high precision application. For example, the resistance value can change up to 5% over a shelf life of one year.  With heavy use the value changes even more: up to 15% for a 2000h test at full rating with 70°C. Soldering can cause a 2% change. The reason for this instability is inherent to the design of the resistor. The carbon composition contains materials with different heat expansion properties. When the conducting carbon particles and the nonconducting binder heat up or cool down, stresses arise in the resistor body. The mechanical contact between the conducting particles will change, and this leads to a change in resistance value. Also [… read more]

Metal oxide film resistor

 
Metal oxide film resistor

What are metal oxide film resistors? Metal-oxide film resistors are fixed form, axial resistors.  They are made of ceramic rod that is coated with a thin film of metal oxides, such as tin oxide. Metal oxide film resistors must not be confused with metal oxide varistors, made of zinc oxide or silicon carbide. Properties Metal oxide film resistors exceed the performance of metal film and carbon film for the following properties: power rating, voltage rating, overload capabilities, surges and high temperatures. Designers choose often the metal oxide film resistor for high endurance applications. For an overview of resistor types with their properties, look here. Stability properties are less good than for the metal film resistor. The metal oxide film resistors have poor properties for low values and tolerance. The temperature coefficient is around 300 ppm/°C, which is higher than for metal film types. The resistance material for metal oxide resistors is tin oxide that is contaminated with antimony oxide, this is to increase the resistivity. Metal oxide resistors can withstand higher temperatures than carbon or metal film resistors. The noise properties are similar to carbon resistors. Maximum operating temperature comparison Material Carbon film Metal film Metal oxide Temperature 200 °C / 390 °F 250-300 °C / 480-570 °F 450 °C / 840 °F Typical Applications Many properties of metal oxide film resistors are similar to metal film resistors. For basic use, metal film and metal oxide film are currently the predominant resistor types. Compared to carbon film, the prices are just as low. Only for dissipation values above 1 watt combined with reasonable stability, the carbon film resistors are still more cost efficient. Construction The metal oxide film is mostly produced with chemical deposition methods. Almost always a ceramic carrier is used as substrate. The deposition process involves the reaction [… read more]

Foil resistor

 
Foil resistor

What is a Foil Resistor? The metal foil resistor has the best precision and stability properties of all resistor types. The foil is made of an alloy of usually Nichrome with additives. It is mounted on a ceramic carrier with high heat conductivity. The foil has a thickness of only several micrometers. The desired resistance value is achieved by a photoetched resistive pattern in the foil. The metal foil resistor has a low Temperature Coefficient of Resistance (TCR), good long term stability, low noise, low capacitance, fast thermal stabilization and no inductance. The low TCR is one of the most important parameters that influence the stability. This means that the resistance value will vary only a small amount as the ambient temperature and the resistor’s internal temperature changes. Over a range from 0 till 60 deg C, a typical value for TCR is around 1 ppm per deg C. This depends on the construction (thermo-mechanical effects) and the properties of the foil material. In the planar foil the pattern is made parallel to reduce inductance (max 0.08 microH). Foil Resistor Definition A foil resistor is a high precision component to limit electric current. The opposition to current flow is provided by a very thin piece of metal. Metal Foil Resistor Characteristics The excellent properties for precision and stability are due to a combination of several characteristics, which are following from the design principles of the metal foil resistor. Temperature Coefficient, Resistance (TCR) – Foil resistors achieve a low TCR by taking advantage of two characteristics of the foil. The resistance of the foil naturally increases as temperature increases. The resistor is manufactured so that rising temperature causes compression of the foil. This makes the resistance drop as temperature rises. The total effect is one of very little resistance change as [… read more]

Metal film resistor

 
Metal film resistor

Metal film resistors Metal film resistors have a thin metal layer as resistive element on a non-conducting body. They are amongst the most common types of axial resistors. Other film type resistors are carbon film and thick and thin film resistors. In most literature referrals to metal film, usually it is a cylindrical axial resistor. However, thin film chip resistors use the same manufacturing principle for the metal layer. The appearance of metal film resistors is similar to carbon film resistors, but their properties for stability, accuracy and reliability are considerably better. Metal film resistor definition Metal film resistors are axial resistors with a thin metal film as resistive element. The thin film is deposited on usually a ceramic body. Construction The resistive element is a thin metal layer that is usually sputtered (vacuum deposition) on a cylindrical high purity ceramic core. Sometimes other techniques than sputtering are used. The deposited metal is artificially aged by keeping it for a long period at a low temperature. This results in a better accuracy of the resistor.  The resistance material is often nickel chromium (NiCr), but for special applications also other alloys are used such as tin and antimony, gold with platinum and tantalum nitride. The stability and resistance are strongly dependent on the thickness of the metal film (50-250 nm). A larger thickness of the layer results in a better stability and a lower resistance value. On both ends a metal cover is pressed with the connection leads.  After this, the desired resistance is achieved by cutting a spiral shaped slot in the thin metal layer. This is usually done by lasers, while in the past sandblasting and grinding techniques were used. Carbon film resistors use the same technique to trim the resistance. The resistor is covered with several coating layers [… read more]

Carbon film resistor

 
Carbon film resistor

What is a carbon film resistor? Carbon film resistors are a fixed form type resistor. They are constructed out of a ceramic carrier with a thin pure carbon film around it, that functions as resistive material. Advantages and drawbacks Carbon film resistors are a significant improvement on carbon composition. However, in comparison to metal film and metal oxide film, the commercially available range steadily decreases. Metal and oxide film are not more expensive to produce, and have overall better properties. Carbon film resistor applications Typical use for carbon film resistors is in high voltage and temperature applications. Operating temperatures are up to 15kV with a nominal temperature of 350°C. Examples are high voltage power supplies, radar, x-rays and laser. Manufacturing Carbon film resistors are made with a deposition process. At high temperature and under a high pressure, a ceramic carrier is held in hydrocarbon gas. The gas (methane or benzene) is cracked at a temperature of 1000°C. The crystalline carbon is pyrolytically deposited on the ceramic substrate. Because of the precise distribution of the pure graphite without binding, these carbon resistors have a low noise. The desired resistance value can be obtained by choosing the right layer thickness, and by cutting a spiral shape in the carbon layer. The helical cut in the film increases the length of the current path. By decreasing the pitch of the helix, the length of the resistive path increases, and therewith the resistance value increases. Furthermore, by fine tuning the cutting of the spiral the resistor can have a higher accuracy of resistance value. Typical tolerance values for carbon film resistors are 2, 5, 10 and 20%. Because of the use of pure carbon, the carbon film resistor has a higher negative temperature coefficient than carbon composition. The resistive temperature coefficient lies between 2.5×10^-4 [… read more]

Resistor materials

 
Resistor materials

Resistors are produced with a wide variety of materials and manufacturing processes. Each resistor material has its typical properties and specific areas of use. The main types that are used in electrical engineering are summed below. Wirewound (WW) These types are made by winding resistance wire in a spiral around a non-conductive core. The resistance wire is usually a nickel-chromium alloy and the core is often ceramic or fiberglass. A coating such as vitreous enamel is used for protection. The spiral winding has capacitive and inductive effects that makes it not suitable for applications higher than 50 kHz. Often other winding techniques are used to reduce the undesired high frequency effects. Wirewound resistors are essentially produced for high precision or for high power applications. They have low noise, are robust, and are temperature stable. Resistance values are available from 0.1 up to 100 kW, with accuracies between 0.001 and 20%. Carbon Composition (CCR) The resistive element is made from a mixture of fine carbon particles and a non-conductive ceramic material. The substance is pressed in a cylindrical shape and baked. The resistance value depends on the dimensions of the body and the ratio between carbon and ceramic material. More carbon means a lower resistance. Carbon composition resistors are remarkably reliable, but have a poor accuracy with a maximum tolerance around 5%. Until the 1960s they were the standard for general applications. They quickly lost market share as other resistor types came on the market with better properties for tolerance, voltage coefficient, temperature coefficient, stability and finally cost. However, their ability to withstand high energy pulses and their high reliability makes them still useful for certain applications. Examples are power supplies and welding controls. Carbon Film A thin, pure carbon film is deposited on an insulating cylindrical core.  A spiral cut [… read more]