Metal oxide film resistor

 
Metal oxide film resistor

What are metal oxide film resistors? Metal-oxide film resistors are fixed form, axial resistors.  They are made of ceramic rod that is coated with a thin film of metal oxides, such as tin oxide. Metal oxide film resistors must not be confused with metal oxide varistors, made of zinc oxide or silicon carbide. Properties Metal oxide film resistors exceed the performance of metal film and carbon film for the following properties: power rating, voltage rating, overload capabilities, surges and high temperatures. Designers choose often the metal oxide film resistor for high endurance applications. For an overview of resistor types with their properties, look here. Stability properties are less good than for the metal film resistor. The metal oxide film resistors have poor properties for low values and tolerance. The temperature coefficient is around 300 ppm/°C, which is higher than for metal film types. The resistance material for metal oxide resistors is tin oxide that is contaminated with antimony oxide, this is to increase the resistivity. Metal oxide resistors can withstand higher temperatures than carbon or metal film resistors. The noise properties are similar to carbon resistors. Maximum operating temperature comparison Material Carbon film Metal film Metal oxide Temperature 200 °C / 390 °F 250-300 °C / 480-570 °F 450 °C / 840 °F Typical Applications Many properties of metal oxide film resistors are similar to metal film resistors. For basic use, metal film and metal oxide film are currently the predominant resistor types. Compared to carbon film, the prices are just as low. Only for dissipation values above 1 watt combined with reasonable stability, the carbon film resistors are still more cost efficient. Construction The metal oxide film is mostly produced with chemical deposition methods. Almost always a ceramic carrier is used as substrate. The deposition process involves the reaction [… read more]

Metal film resistor

 
Metal film resistor

Metal film resistors Metal film resistors have a thin metal layer as resistive element on a non-conducting body. They are amongst the most common types of axial resistors. Other film type resistors are carbon film and thick and thin film resistors. In most literature referrals to metal film, usually it is a cylindrical axial resistor. However, thin film chip resistors use the same manufacturing principle for the metal layer. The appearance of metal film resistors is similar to carbon film resistors, but their properties for stability, accuracy and reliability are considerably better. Metal film resistor definition Metal film resistors are axial resistors with a thin metal film as resistive element. The thin film is deposited on usually a ceramic body. Construction The resistive element is a thin metal layer that is usually sputtered (vacuum deposition) on a cylindrical high purity ceramic core. Sometimes other techniques than sputtering are used. The deposited metal is artificially aged by keeping it for a long period at a low temperature. This results in a better accuracy of the resistor.  The resistance material is often nickel chromium (NiCr), but for special applications also other alloys are used such as tin and antimony, gold with platinum and tantalum nitride. The stability and resistance are strongly dependent on the thickness of the metal film (50-250 nm). A larger thickness of the layer results in a better stability and a lower resistance value. On both ends a metal cover is pressed with the connection leads.  After this, the desired resistance is achieved by cutting a spiral shaped slot in the thin metal layer. This is usually done by lasers, while in the past sandblasting and grinding techniques were used. Carbon film resistors use the same technique to trim the resistance. The resistor is covered with several coating layers [… read more]

Resistor materials

 
Resistor materials

Resistors are produced with a wide variety of materials and manufacturing processes. Each resistor material has its typical properties and specific areas of use. The main types that are used in electrical engineering are summed below. Wirewound (WW) These types are made by winding resistance wire in a spiral around a non-conductive core. The resistance wire is usually a nickel-chromium alloy and the core is often ceramic or fiberglass. A coating such as vitreous enamel is used for protection. The spiral winding has capacitive and inductive effects that makes it not suitable for applications higher than 50 kHz. Often other winding techniques are used to reduce the undesired high frequency effects. Wirewound resistors are essentially produced for high precision or for high power applications. They have low noise, are robust, and are temperature stable. Resistance values are available from 0.1 up to 100 kW, with accuracies between 0.001 and 20%. Carbon Composition (CCR) The resistive element is made from a mixture of fine carbon particles and a non-conductive ceramic material. The substance is pressed in a cylindrical shape and baked. The resistance value depends on the dimensions of the body and the ratio between carbon and ceramic material. More carbon means a lower resistance. Carbon composition resistors are remarkably reliable, but have a poor accuracy with a maximum tolerance around 5%. Until the 1960s they were the standard for general applications. They quickly lost market share as other resistor types came on the market with better properties for tolerance, voltage coefficient, temperature coefficient, stability and finally cost. However, their ability to withstand high energy pulses and their high reliability makes them still useful for certain applications. Examples are power supplies and welding controls. Carbon Film A thin, pure carbon film is deposited on an insulating cylindrical core.  A spiral cut [… read more]